Minimal Set for Powers of 2

Bassam Abdul-Baki
October 7, 2019

Definition

Let x and y represent a string of digits (in base 10). x is defined to be a subsequence (<) of y (denoted
by x <ly) if zero or more digits can be deleted fromy, in any order, to get x (i.e., 24 < 1234).

A classical theorem of formal language theory, known as Higman’s lemma'®, states that every set of
pairwise incomparable strings is finite.

Given any set of strings S, we define the minimal set M(S) as the set of minimal elements of S such that
foreach xS,y 3 M(S), and x <y, then x = y. Since M(S) is obviously pairwise incomparable, M(S) is also
finite.

In 2001, Jeffrey Shallit? derived and proved the minimal set for primes, and conjectured on the minimal
set for powers of 2.

Conjecture

If S= POWERS-OF-2 = {1, 2, 4, 8, 16, 32, 64, ...}, then M(S) = {1, 2, 4, 8, 65536, ?}.

Shallit conjectured that the minimal set consists only of the known five numbers. My analysis suggests
that there should be at least one extremely large number.

Theorem

My original unpublished proof is from 2010, I'll reproduce it here for completeness’s sake. What's
new here are the lemmas and the data that support the difficult or unprovable nature of this problem.

Letxo=5and xis1=5xi—4,thenVi>1,i €N,

i-1,|i+3 i+3 .
1657+ = 1617 (moa 109 (1)
Proof
xo = 5
x1 == 52 - 4‘
X, =53 —4x5—4
Xiy1 = 5% — 4
i
=512 _ 4 x Z 5/
j=0
= §i+2 _ git+l +1
=4 x5 41
=1 (mod 4)
2Xi41 _ D = 25%i—4 _)
=2x (25473 = 1)
=2 x (257D — 1)
=2 X (2471 — 1) x (24%i7D 4 230a=D) 4 220a71) 4 pxim1 4 1) (2)
%=1 — p4x5i?
=165
=1 (mod 5)
= 21 = 1 (mod 5)
= 24~ 4 2306=1) ¢ 226~ 4 2%i71 + 1 = 0 (mod 5) (3)
~ By (2) and (3), 2¥i#1 — 2 = 5k x (2%i — 2) (4)
By the Fermat-Euler Theorem, 2% = 1 (mod 5) and 2° = 2 (mod 5). (5)

-~ By induction on (2) using (4) and (5),

2%+ —2 =2 x (2% 1 —1) x (24’(xi_1) 4+ 23(xi=1) 4 22(x=1) 4 pxi—1 4 1)
=0 (mod 5x (2% — 2))
= 0 (mod 5'*2).

Since 2 || (2%i — 2),and (2,5) = 1,then

2i X 24»><5i+1 = 2i+1 (m0d10i+1)

24.><5i+i+1 = pi+1 (m0d10i+1)

LetjeN,3i+1+j=0 (mod 4) for minj > 0.

ORINIWIO|IFRIN|W ([w=
(||| ~|P>

= INO NP WIN|IRO|=

-(i+1) (mod 4)

24X5Hi+1 = oit1 (mod 10i+1)
24XSHi+1+] — 9i+1+4] (mod 10+1)
24><5"+4><[ifT4J = 24XliTT4J (mod 10%*1)

i+4

1615 = 1615 (mod 101+1)

Replacing i with i-1 completes the proof of (1).

Potential Solutions

Legend

] Modulus 10
|:| Potential powers of 16 (mod 10/)

|:| Potential powers of 16 (mod 10", but not mod 10')

|:| Additive Delta — Differences of powers of 16 between (mod 10?!) and (mod 10™Y) (i.e., The first residue digit)

Powers of 16

/ Powers of 16 (mod 107)

/

Differences of the Residues

n+2x572 | n+3x52 | neaxsiz | Ry Ry R, Rs Rs

1 0 0 0 0
6 | | | |

+4x10 (mod 102) 0 1 1 1 1
3 4 5 6 | 6 | 6 | 6 | 6 1 5 9 3 7
+2x102 (mod 10%) 3 2 3 1 3
2 7 12 17 22 56 56 56 56 56 2 4 6 8 0
3 8 13 18 23 9% 96 9% 96 96 0 2 4 6 8
4 9 14 19 24 36 36 36 36 36 5 7 9 1 3
5 10 15 20 25 76 76 76 76 76 5 7 9 1 3
+6x10° (mod 10%) 9 7 8 6 6
3 28 53 78 103| 2096 | o096 | co9s | 2096 | =096 4 0 6 2 8
4 29 54 79 104| o536 | 1536 | 7536 | 3536 | o536 5 1 7 3 9
5 30 55 80 105 | ss76 | 4576 | 0576 | 6576 | 2576 8 4 0 6 2
9 34 59 84 109| <736 | 2736 | c736| 4736 | 0736 6 2 8 4 0
10 35 60 85 120 776 | 3776 | 9776 | 776 | 1776 7 3 9 5 1
12 37 62 87 12| oes6 | cese | 2656 | 2656 | 4656 0 6 2 8 4
14 39 64 89 124 | 7936 | 2936 | 9936 | 5936 | 1936 7 3 9 5 1
15 40 65 90 115 | co76 | 2976 | 2976 | 4976 | 0976 6 2 8 4 0
18 43 68 93 118 | 2696 | o696 | 696 | 1696 | 7696 3 9 5 1 7
22 47 72 97 122| 1056 | 7056 | z0s6 | o056 | cose 1 7 3 9 5
24 49 74 99 124 | 0336 | 336 | 2336 | 2336 | 4336 0 6 2 8 4
25 50 75 100 125 | 376 | 1376 | 7376 | 2376 | <376 5 1 7 3 9

Powers of 16

/ Powers of 16 (mod 10/)

/

Differences of the Residues

/n n+5i2 n+2x52 [n+3x572 | n+4x5i2 Ro R1 R, Rs Ra
5 +8x10% (mod 105) 18 22 23 21 23
4 129 254 379 504 | 65536 | 45536 | 25536 5536 | 85536 6 4 2 0 8
9 134 259 384 509 | 76736 | 56736 | 36736 | 16736 | 96736 7 5 3 1 9
10 135 260 385 510 § 27776 7776 | 87776 | 67776 | 47776 2 0 8 6 4
12 137 262 387 512 | 10656 | 90656 | 70656 | 50656 | 30656 1 9 7 5 3
14 139 264 389 514 § 27936 7936 | 87936 | 67936 | 47936 2 0 8 6 4
15 140 265 390 515 | 46976 | 26976 6976 | 86976 | 66976 4 2 0 8 6
18 143 268 393 518 | 13696 | 93696 | 73696 | 53696 | 33696 1 9 7 5 3
24 149 274 399 524 | 50336 | 30336 | 10336 | 90336 | 70336 5 3 1 9 7
25 150 275 400 525 5376 | 85376 | 65376 | 45376 | 25376 0 8 6 4 2
28 153 278 403 528 | 20096 96 | 80096 | 60096 | 40096 2 0 8 6 4
35 160 285 410 535) 23776 3776 | 83776 | 63776 | 43776 2 0 8 6 4
37 162 287 412 537 | 86656 | 66656 | 46656 | 26656 6656 8 6 4 2 0
39 164 289 414 539 | 83936 | 63936 | 43936 | 23936 3936 8 6 4 2 0
43 168 293 418 543 | 29696 9696 | 89696 | 69696 | 49696 2 0 8 6 4
47 172 297 422 547 | 57056 | 37056 | 17056 | 97056 | 77056 5 3 1 9 7
49 174 299 424 549 6336 | 86336 | 66336 | 46336 | 26336 0 8 6 4 2
53 178 303 428 553 | 36096 | 16096 | 96096 | 76096 | 56096 3 1 9 7 5
54 179 304 429 554 | 77536 | 57536 | 37536 | 17536 | 97536 7 5 3 1 9
55 180 305 430 555 | 40576 | 20576 576 | 80576 | 60576 4 2 0 8 6
60 185 310 435 560 | 19776 | 99776 | 79776 | 59776 | 39776 1 9 7 5 3
64 189 314 439 564 | 39936 | 19936 | 99936 | 79936 | 59936 3 1 9 7 5
68 193 318 443 568 | 45696 | 25696 5696 | 85696 | 65696 4 2 0 8 6
72 197 322 447 572 | 33056 | 13056 | 93056 | 73056 | 53056 3 1 9 7 5
75 200 325 450 575) 97376 | 77376 | 57376 | 37376 17376 9 7 5 3 1
79 204 329 454 579 | 33536 | 13536 | 93536 | 73536 | 53536 3 1 9 7 5
80 205 330 455 580 | 36576 | 16576 | 96576 | 76576 | 56576 3 1 9 7 5
85 210 335 460 585 | 15776 | 95776 | 75776 | 55776 | 35776 1 9 7 5 3
89 214 339 464 589 | 95936 | 75936 | 55936 | 35936 | 15936 9 7 5 3 1
97 222 347 472 597 9056 | 89056 [69056 | 49056 | 29056 0 8 6 4 2
100 225 350 475 600 | 93376 | 73376 | 53376 | 33376 13376 9 7 5 3 1
104 229 354 479 604 | 89536 | 69536 | 49536 | 29536 9536 8 6 4 2 0
109 234 359 484 609 736 | 80736 | 60736 | 40736 | 20736 0 8 6 4 2
115 240 365 490 615 | 30976 | 10976 | 90976 | 70976 | 50976 3 1 9 7 5
118 243 368 493 618 | 77696 | 57696 | 37696 | 17696 | 97696 7 5 3 1 9
122 247 372 497 622 | 85056 | 65056 | 45056 | 25056 5056 8 6 4 2 0
125 250 375 500 625 | 89376 | 69376 | 49376 | 29376 9376 8 6 4 2 0
6 +4x105 (mod 10°) 69 63 64 62 62
7 +2x10° (mod 107) 182 191 194 188 196
8 +6x107 (mod 108) 545 545 574 581 570
9 + 8x108 (mod 109) 1,654 1,649 1,632 1,633 1,714

5

Lemmas / Patterns
The following lemmas are used to prove the patterns in the Potential Solutions section.

Lemma 1

All powers of 16 when multiplied by (1651'_2 — 1) are congruent (mod 10/). Use one less than the

bottom group number in the Ry column of “Powers of 16 (mod 10)” in the Potential Solutions section.

Proof
ToshowthatVanZli?J,iZ 2,m,n €N,

16" x (1657 = 1) = 16™ x (165" — 1) (mod 10Y)
or 16™ x (16"™ — 1) x (165 = 1) = 0 (mod 10Y)
we only have to show that the two equations hold (mod 2') and (mod 5') since (2, 5) = 1.
For (mod 2/):
Leti=4xa+b,0<b <3, then

{a, i =0 (mod4)
m= a+1, i#0(mod4)

Fori=0(mod 4), 16™ = 24*Xm > 24xa — i,
Fori#0 (mod 4), 16™ = 24m > p4x(a+1) 5 pi,
~.2"] 16™or 16™ =0 (mod 2).

For (mod 5/):

16 =15+ 1 =1 (mod 5)
Assume 3i,j | Vj, 1<j<i,
16" =1 (mod 5%)
Then by strong induction,

165 = (165i_1)5

(6)

= (5'k +1)°
= 1 (mod 5'*1) (7)
=165 =1 (mod 5°1)
Since 5 | (16"~™ — 1), then (16™™ — 1) X (165” - 1) = 0 (mod 5Y).

~ By (6) and (8), 16™ x (16™™ — 1) x (165i_2 - 1) =0 (mod 10)),vn = m

v

=, (8)

4
Note: 16™ X (165i_2 - 1) % 0 (mod 10') by the main Theorem.
[
Example
VneN,1<n<25

16" x (165" — 1) = 1,048,575 x 16" = 200 (mod 103)
Lemma 2

The differences of row-wise adjacent powers of 16 is constant modulus 10. See the orange digits in the
“Powers of 16 (mod 10')” columns (R; = residue) in the Potential Solutions section. This lemma is a
rewording of Lemma 1.

Proof
From Lemmal,Vm,n2 lHTSJ,i >2,mné€EN,
16" x (1657 = 1) = 16™ x (165" — 1) (mod 10')
But applying the Distributive Property gives us the difference of row-wise adjacent powers.
16M+57" — 16" = 16™*5* — 16™ (mod 10%)
]
Example
vneN,1<n<25,

16™+5°7% — 16™ = 200 (mod 103)

Lemma 3

The additive deltas are equal to 16577 x (1651‘_2 - 1) (mod 10%). Use one less than the bottom group

number in the Ro column of “Powers of 16 (mod 10')” in the Potential Solutions section. This lemmais a
particular instance of Lemma 2.

Proof
Viz2,i€N,
16257 = (165")2 (mod 10Y)
=165 x (1657 = 1) + 165" (mod 107)
= 16257 — 165 =165 x (165 — 1) (mod 10Y)

By Lemma 1 and Lemma 2, this completes the proof.

|]
Example
162+5°7% — 162 = 167 — 165 = 200 (mod 103)
1657 x (167 -1) = 165x(165—-1) = 200 (mod 103)
Lemma 4

The differences of row-wise adjacent powers in a given modulus group is an even non-zero multiple of
10", See the orange cells in the “Additive Delta” column in the Potential Solutions section.

Proof

From Lemma 2,V n2 li?J,i >2,n€EN,
165" — 16™ = constant (C) (mod 10%)
4
Z (16n+(k+1)><5i_2 _ 16n+k><5i_2) — 16n+5i_1 —16™

k=0
=5C (mod 10i)

By the main Theorem,
16" x (1657 = 1) £ 0 (mod 10)
165" — 16" = 0 (mod 10°)
- C=0 (mod 2x10"), but C # 0 (mod 10).

Example
VneN,1<n<?25
16™+5°* — 16™ = 200 (mod 103)

4
Z (16"+("+1)X5i_2 - 16"*"X5i_2) = 1000 = 5C (mod 103)
k=0

~C =0 (mod 2 x 10?%).
Lemma 5
The unit digit ofé x (165i_1 - 1) is equal to 3.
Proof
By (7), 165 ' =1 (mod 5Y).

21657 —1=5ixk
Given

16 —1=5x%3

16% — 1 = 5% x 41,493
Assume 165" — 1 = 5! x (104 + 3).
Then by induction,

54 = 5i-1 4 jxsi—1>
16% — 1= (16 1) % <; 16

4

= 50 x (104 + 3) X (Z (165i_1)j>

j=0
4
= 50 % (104 + 3) x (Z(lOB + 6)j>
j=0
=5 x (104 + 3)

X (100C +4 x 10B X 6%+ 6*+3 x 10B X 6>+ 6> +2x 10BXx 6+ 62+ 10B+ 6 + 1)
= 5! x (104 + 3) x (100C + 9,850B + 1555)
= 5! x (104 + 3) x (100C + 9,850B + 1550 + 5)
=5 x (104 + 3) x (50D + 5)
=5!x (104 +3) X 5x (10D + 1)
= 51 x (104’ + 3)

Example

i a=165"(mod 10%5) . k (mod 10)

16

1,048,576
401,496,703,205,376 3,
053,328,527,589,376
932,619,489,509,376 2
360,370,299,109,376 23,
281,524,347,109,376 3,6
447,294,587,109,376 1,14
276,145,787,109,376 141,
420,401,787,109,376 43,0
141,681,787,109,376 2,90
748,081,787,109,376 3,06
780,081,787,109,376 639,0
940,081,787,109,376 154,02
740,081,787,109,376 24,251

O 00 NOUd WN K-
w

e S =
DWN R O
W W WWwWwwwwwowwwww

[EEN
(9]

Note: Although k is shown using “a (mod 10%%)”, the actual value of k, for the full value of a, is correct up
to the digits in . The rest were too large for any program to correctly calculate the actual values of
a. 10 was chosen since that is the smallest power divisible by both 3 and 5. However, at i = 15, the
pattern fails and 10%° should probably be used instead.

((16~(X+Y)-1) /5m*x®) (mod 10)

X 1 2 3 4 5
0 + 3 1 9 7 3
5 + 3 1 9 7 1
10 + 3 1 9 7 9
15 + 3 1 9 7 7
20 + 3 1 9 7 3
25 + 3 1 9 7 3
30 + 3 1 9 7 1
35 + 3 1 9 7 9
40 + 3 1 9 7 7
45 + 3 1 9 7 1
50 + 3 1 9 7 3

The general rule for this appears to be as follows:

(X +Y

— if X+Y =0(mod5)

1657 —1 3, if X+Y =1 (mod5)

———— (mod 10) = ; _

5k 1, if X+Y =2 (mod5)

l 9, ifX+Y=3(mod5)

7, if X+Y =4 (mod5)

From this general pattern, one can see that every power of 5 implies X + Y = 1 (mod 5). However, this
pattern shall not be proven here. This pattern is similar to https://oeis.org/A001511 and others like it.

,where 5% || (16X*Y — 1)

10

https://oeis.org/A001511

Lemma 6

The differences of powers in a given modulus is cyclical across all moduli (i.e., add 4, 2, 6, or 8 in that
order). The sequences generated are either odd or even with the following patterns. See the orange
cells in the “Additive Delta / Powers of 16 (mod 107)” columns in the Potential Solutions section.

Additive Odd

4 1,5093,7|0,4,8,2,6
1,3,57,9/0,2,4,6,8
1,7,3,9,5/0,6,2,8,4
1,9,7,5,3/0,8,6,4,2

o N

Proof

Lemma 2 shows that the delta between two consecutive powers for a given modulus is constant. Thus,
we only have to prove this for any two cyclical powers.

i+3+j)
4

letn> || i>2,1<j<4neN.
We need to determine for which j the following inequality holds.

(16757 = 16") (mod 10%) — (16™+5"" — 16™) (mod 10+))

= (16” x (1657 - 1)) (mod 10) — (16" x (16577 - 1)) (mod 10+)
By (6), 16" = 0 (mod 2') for the left-hand side and 16" = 0 (mod 2™) for the right-hand side.

Also, it is trivial to see that

A = B (mod 10%)
= A% 10/ = B x 10/ (mod 10'*))

By Lemma 5,
(165i_2 - 1) = 5i-1 % (10k + 3)
This gives us

(16" x (1657 - 1)) (mod 10%) = 29" x 5i-1(104 + 3)

(16” % (165”” - 1)) (mod 101*)) = 24" x 5i=1+/(10B + 3)

11

Multiplying the first equation by 10’ and subtracting the second equation, we get

0= 24" x 55714 (104 + 3) x 2/ — 24" x 51714 (10B + 3) (mod 10')
= 241 x 5i-1+) % ((10A +3)x 2/ — (10B + 3)) (mod 10*/)
= 2% x 57714 x (10(2 x A - B) +3(2/ — 1)) (mod 107*7)
= ((24" X 51717 % 10 x (27 x A = B)) + (2#" x 5171 x 3(2J — 1))) (mod 101+))
= ((24”+1 x 51 x (27 x A= B)) + (2*" x 5714 x 3(2/ - 1)))
Since 4n + 1 > i + j, then 10"+/|(247+1 x 5+)),
Therefore, we need only check that
(24" x 511%7 x 3(27 — 1)) = 0 (mod 10+))
Since 4n > i — 1 + j, then 2:*/| 24",

(27 = 1) = 0 (mod 5) iff j = 0 (mod 4).

Therefore, by induction on the first four powers, the additive delta is cyclical for every fourth power
with the values shown.

Example

(16457 — 16%) (mod 10?) = 4 x 102! (mod 10%) = 40
(164+5°7 — 16*) (mod 10%) = 4 x 105~ (mod 10°) = 400000
(16*+5" — 16*) (mod 10%*2) = 4 x 10%*! (mod 10*+2) = 4 x 10**1

12

Lemma 7

If a = 0 (mod 2') and a = 1 (mod 5'), thena = 165" (mod 10). This lemma is an alternate proof
of Lemma 1.

Proof

By the Fermat-Euler Theorem, b™ = 1 (mod n), where (b, n)=1,n = {Llpia", and p(n) =

(P x (- D).

Therefore,
b(p(Si) — b4><5i_1

_ (b4)5i—1
=1 (mod 5%)

Since @ = 0 (mod 2) and 5:=1 > i, Vi € N, then letting b = 2 gives us 165 = 0 (mod 2Y).
Since (2,5) =1, thena = 165 (mod 10%).
To prove uniqueness, let a; = 5'k; + 1and a, = 5'k, + 1, where k; # k,anda; =a, =0 (mod Zi).
Then,
a; — ap = 5'(ky — k)
= 0 (mod 2Y)

and since 5! = 1 (mod 2),
ki = k, (mod 2%)

Let k; = 2'm; + b and k, = 2'm, + b.

Then,
a; —a, =5 ((Ziml +b)—(2'm, + b))
= 5! (Zi(m1 - mz))
= 0 (mod 2Y)
and, thus,

a; —az; = 10i(m1 —my)
=0 (mod 10i)
= a; = a, (mod 10Y)

ca=165" (mod 10i) is the unique solution.

13

Example

a(mod 2’) a(mod 5

. i— . a
i a=165" (mod 10%) k=

5i
1 6 1 0 1
2 76 3 0 1
3 376 3 0 1
4 9,376 15 0 1
5 09,376 3 0 1
6 109,376 7 0 1
7 7,109,376 91 0 1
8 87,109,376 223 0 1
9 787,109,376 403 0 1
10 1,787,109,376 183 0 1
11 81,787,109,376 1,675 0 1
12 081,787,109,376 335 0 1
13 0,081,787,109,376 67 0 1
14 40,081,787,109,376 6,567 0 1
15 740,081,787,109,376 24,251 0 1

Note: See the table in the Example of Lemma 5.

Programming

In order to find all potential powers, one only has to calculate the previous known powers’ potential
solutions and add the additive delta of that modulus to get the next four leading digits to determine the
potential solutions of the next higher power. This reduces the number of calculations to one fifth and
reduces the time to calculate higher powers exponentially. The problem with this approach is storing all
the numbers. We do gain speed, but we lose on memory; unless we read and write to a file, then speed
takes a dive.

14

Combinations

If the delta differences of the residues are odd (see the first column in the “Differences of the Residues”
columns in the Potential Solutions section), we are guaranteed four new solutions (Qa) since the first
digit will be a 3, 5, 7, or 9 and the remaining number sequence has passed the previous modulus test.

If the delta differences of the residues are even, we are guaranteed at most two new solutions (E;) since
the first digit will be a 0 or 6 and the remaining number sequence has passed the previous modulus test.
However, if the remaining number contains a “5*5*3” in that order, then the 6 will also be thrown out
and we only have one new solution (E3).

Thus, O4 + E + E1 = Previous Total Solutions and 4x04 + 2xE; + E; = Current Total Solutions.

i Os & E; E; # of Potential
Solutions
1 - < - 1 1
2 1 > - - 4
3 2 = 2 - 12
4 6 = 6 - 36
5 18 = 17 1 107
6 54 > 51 2 320
7 160 = 151 9 951
8 477 > 433 41 2,815
9 1,407 < 1,246 162 8,282
10 4,143 > 3,526 613 24,237
11 12,126 > 9,957 2,154 70,572
12 35,276 < 27,983 7,313 204,383
13 102,188 < 78,251 23,944 589,198
14 294,595 < 217,558 77,045 1,690,541
15 845,242 < 602,000 243,299 4,828,267
16 | 2,414,020 < 1,658,335 755,912 13,728,662
17] 19,434,939 > 12,431,316 7,003,557 38,869,812
18 109,605,945
19 307,872,443
20 861,587,221
21 2,402,681,620

15

Minimum Powers of 16

Every time the minimum power of 16 increases, the actual power of 16 increases by at least one digit for
each power increase [nxlogio(16)]. Thus, for a solution to exist, the rate in which the potential power
grows has to be much slower than the delta changes in power. If we can see that the minimum power
of 16 (e.g., 598,640) remains a potential solution for a much longer duration than the next minimum
potential solution to replace it (i.e., 30,617,335), then that would show that we are closing in on the
number of digits yet to be eliminated. As it stands, the number of digits added far exceeds the number
of digits eliminated.

i Min Power of 16 } # of Digits Delta Digits ' Digits Remaining
1 1 2 = 1
2 2 3 1 1
3 3 4 1 1
4 4 5 1 1
5 9 11 6 6
6 24 29 18 23
7 24 29 0 22
8 72 87 58 79
9 72 87 0 78
10 72 87 0 77
11 72 87 0 76
12 72 87 0 75
13 615 741 654 728
14 615 741 0 727
15 679 818 77 803
16 679 818 0 802
17 679 818 0 801
18 679 818 0 800
19 2,600 3,131 2,313 3,112
20 13,693 16,489 13,358 16,469
21 13,693 16,489 0 16,468
22 13,693 16,489 0 16,467
23 13,693 16,489 0 16,466
24 14,268 17,181 692 17,157
25 14,268 17,181 0 17,156
26 598,640 720,835 703,654 720,809
27 598,640 720,835 0 720,808
28 598,640 720,835 0 720,807
29 598,640 720,835 0 720,806
30 598,640 720,835 0 720,805

16

i
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Min Power of 16
598,640

598,640

598,640

598,640
30,617,335
30,617,335
30,617,335
5,351,076,993
5,351,076,993
5,351,076,993
5,671,125,054
37,929,362,189
37,929,362,189
37,929,362,189
341,764,098,390
753,012,834,643
753,012,834,643
949,121,243,560

of Digits
720,835
720,835
720,835
720,835
36,866,945
36,866,945
36,866,945
6,443,338,737
6,443,338,737
6,443,338,737
6,828,715,002
45,671,502,942
45,671,502,942
45,671,502,942
411,524,980,226
906,717,801,391
906,717,801,391
1,142,855,855,334

Delta Digits

o O o o

36,146,110

0

0

6,406,471,792

0

0

385,376,265
38,842,787,940
0

0
365,853,477,284
495,192,821,165
0
236,138,053,943

Digits Remaining
720,804

720,803

720,802

720,801
36,866,910
36,866,909
36,866,908
6,443,338,699
6,443,338,698
6,443,338,697
6,828,714,961
45,671,502,900
45,671,502,899
45,671,502,898
411,524,980,181
906,717,801,345
906,717,801,344
1,142,855,855,286

17

Conclusion

Since the pattern cannot terminate because an odd cycle will obviously add four new potential solutions
and an even cycle will add either one or two solutions, it remains to be seen if there isn’t a power of 16
that does not reduce to a power of two from the set of {1, 2, 4, 8, 65536}.

One thing to note is that the potential solutions’ list moves away from both limit ends for the following
reasons. At the lower end, the limit shifts by one every four numbers, but the eliminated previous
potential solutions appear to drop at a faster rate. At the upper end, the limit sees a drop depending on
which of the largest numbers from the previous list is still a potential solution when 4 x 572 is added to it
(e.g., Fori=5, the largest three solutions are 618, 622, and 625. However, for i = 6, the largest
remaining potential solution is 618 + 4 x 54 = 3,118 < 3,125.). This trend, however, does not reduce the
number of solutions since the sequence of potential solutions is non-decreasing until another solution is
found and eliminated.

If one or more solutions do exist, then those numbers would be exceptionally large. Once a first
solution is found, using a regular expression of it to eliminate most other potential solutions will prove
difficult since checking for longer combination patterns grows exponentially. A distributed program
would therefore be better suited to check for these solutions. If a solution cannot be zeroed in on, then
the problem may be unproveable.

18

Observation

Based on the Lemmas / Patterns and the Potential Solutions, there might be an easier way to calculate
modular arithmetic powers.

For example, looking at 16?2 (mod 10*) = 0096,
28=4x7=2*x7=22x(1+2x3)or
28=1+27=1+33
To calculate 162 (mod 10%) using the first breakdown, we get:

1628 (mod 10%) = 162" X(1+2X3) (mod 10%) = (162)? x (((162)2)?)3 (mod 10%),
which gives us 6 multiplication operations, assuming (162)? is not calculated twice.
To calculate 1622 (mod 10%) using the second breakdown, we get:

1628 (mod 10%) = 161+3° (mod 10%) = 16 x ((163)3)3 (mod 10%),

which gives us 7 multiplication operations.

However, if we calculate 16% (mod 10%) using 2 multiplication operations, we would only need to add the
additive delta to get the correct value for each consecutive power of 10 after 3 (i.e., 28, 53, 78, and 103).
This reduces the number of multiplication operations drastically for the higher powers.

Developing a general formula for any power, assuming one exists or hasn’t already been developed, is
outside the scope of this paper.

19

Solutions Summary

O 0 N O U bW N P

N NN N NNPR P R P R P P R PP
U B W N P O W OoObMNOO U » wWN P O

N
(2}

Min Limit for

Power of 16

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7

Max Limit for Power of 16

25

125

626

3,126

15,626

78,126

390,627

1,953,127

9,765,627

48,828,127
244,140,628
1,220,703,128
6,103,515,628
30,517,578,128
152,587,890,629
762,939,453,129
3,814,697,265,629
19,073,486,328,129
95,367,431,640,630
476,837,158,203,130
2,384,185,791,015,630
11,920,928,955,078,130
59,604,644,775,390,631
298,023,223,876,953,131

of Potential
Solutions

4
12

36

107

320

951

2,815

8,282

24,237

70,572
204,383
589,198
1,690,541
4,828,267
13,728,662
38,869,812
109,605,945
307,872,443
861,587,221
2,402,681,620

20

Min Power of 16

O b~ W N

24

24

72

72

72

72

72

615
615
679
679
679
679
2,600
13,693
13,693
13,693
13,693
14,268
14,268
598,640

Max Power of 16

5

25

125

625

3,118

15,618

78,118

390,618

1,953,118

9,765,539

48,828,039

244,140,539
1,220,702,509
6,103,515,009
30,517,577,509
152,587,890,009
762,939,452,509
3,814,697,265,009
19,073,486,305,797
95,367,431,606,618
476,837,158,169,118
2,384,185,790,950,547
11,920,928,954,929,785
59,604,644,775,219,697
298,023,223,876,782,197

Max Limit for Power of 16

of Potential
Solutions

Min Power of 16

Max Power of 16

i Min Limit for
Power of 16

27 7
28 7
29 8
30 8
31 8
32 8
33 9
34 9
35 9
36 9
37 10
38 10
39 10
40 10
41 11
42 11
43 11
44 11
45 12
46 12
47 12
48 12

1,490,116,119,384,765,631
7,450,580,596,923,828,131
37,252,902,984,619,140,632
186,264,514,923,095,703,132
931,322,574,615,478,515,632
4,656,612,873,077,392,578,132
23,283,064,365,386,962,890,633
116,415,321,826,934,814,453,133
582,076,609,134,674,072,265,633
2,910,383,045,673,370,361,328,133
14,551,915,228,366,851,806,640,634
72,759,576,141,834,259,033,203,134
363,797,880,709,171,295,166,015,634
1,818,989,403,545,856,475,830,078,134
9,094,947,017,729,282,379,150,390,635
45,474,735,088,646,411,895,751,953,135
227,373,675,443,232,059,478,759,765,635
1,136,868,377,216,160,297,393,798,828,135
5,684,341,886,080,801,486,968,994,140,636
28,421,709,430,404,007,434,844,970,703,136
142,108,547,152,020,037,174,224,853,515,636
710,542,735,760,100,185,871,124,267,578,136

598,640

598,640

598,640

598,640

598,640

598,640

598,640

598,640
30,617,335
30,617,335
30,617,335
5,351,076,993
5,351,076,993
5,351,076,993
5,671,125,054
37,929,362,189
37,929,362,189
37,929,362,189
341,764,098,390
753,012,834,643
753,012,834,643
949,121,243,560

1,490,116,119,384,594,697
7,450,580,596,923,380,330
37,252,902,984,618,692,830
186,264,514,923,092,438,993
931,322,574,615,462,248,693
4,656,612,873,077,357,546,685
23,283,064,365,386,927,859,185
116,415,321,826,934,779,421,685
582,076,609,134,674,037,234,185
2,910,383,045,673,370,326,296,685
14,551,915,228,366,851,606,543,560
72,759,576,141,834,256,896,013,200
363,797,880,709,171,293,028,825,700
1,818,989,403,545,856,473,692,888,200
9,094,947,017,729,282,371,782,856,555
45,474,735,088,646,411,881,401,569,118
227,373,675,443,232,059,464,409,381,618
1,136,868,377,216,160,297,249,736,267,803
5,684,341,886,080,801,486,824,931,580,303
28,421,709,430,404,007,434,700,908,142,803
142,108,547,152,020,037,174,080,790,955,303

21

Python Source Code

The Python languagel was chosen for its ease of use and infinite-precision arithmetic. There are different methods of programming this. One
approach is to store all the previous solution powers and use them to build the next iteration. This, however, would run out of memory very
quickly and storage space soon after. A second approach would be to find only the first power for each iteration and make sure that we are
always less than the congruent limit or the maximum computed one. This approach is slightly better. We still need to calculate the power for
almost every modulus, but it does not require as much memory and resources. | used the latter approach.

MinimalSets.py

Description

This algorithm can run forever, albeit very slowly. The upper limit value is used to avoid checking all the way up to the maximum upper bound
for each module power.

Code

import sys
import math
import re

def minimalPowersOf2():
pattern = re.compile('3.*?5.*?5.%?6")
This pattern assumes that unless you're starting at a certain non-zero length, those lengths will be skipped.
It is particularly noticeable for the first small powers.

MP2 = [
e, 8 7, 6, 5, 4, 3, 2, 1, o, 14, 13, 12, 11, 18, 9, 8, 7, 6, 5, 4, 3, 2, 1, O,
e, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, o, 1, O,
3, 2, 1, o, o, 9, 8, 7, 6, 5, 4, 3, 2, 1, o, 7, 6, 5, 4, 3, 2, 1, @, 2, 1,
e, 3, 2, 1, ©, o, 8 7, 6, 5, 4, 3, 2, 1, e, 7, 6, 5, 4, 3, 2, 1, o, 2, 1,
e, 8 7, 6, 5, 4, 3, 2, 1, o, 5, 4, 3, 2, 1, o, 2, 1, e, 15, 14, 13, 12, 11, 10,
o, 8 7, 6, 5, 4, 3, 2, 1, @, e, 1, e, 1, o, 3, 2, 1, o, 5, 4, 3, 2, 1, O,
3J 2) 1J e) 6J 5) 4J 3) 2J 1) 0) 1) eJ 1) 0) 3) 2J 1) eJ 3) B 1) B 6) SJ
4, 3, 2, 1, o, 5, 4, 3, 2, 1, o, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

22

Q, , 8 7, 6, 5, 4, 3, 2, 1, o, 3, 2,
e, 3, 2, 1, o, 13, 12, 11, 10, 9, 8, 7, 6,
e, 8, 7, , 5, 4, 3, 2, 1, o, 2, 1, s
e, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12,
3, 2, 1, o, o, o, 4, 3, 2, 1, o, 3, 2,
e, 3, 2, 1, o, o, 4, 3, 2, 1, o, 3, 2,
e, 8 7, 6, 5, 4, 3, 2, 1, o, 5, 4, 3,
4, 3, 2, 1, o, 5, 4, 3, 2, 1, o, 1, o,
3, 2, 1, o, 6, 5, 4, 3, 2, 1, o, 7, 6,
3, 2, 1, o, 6, 5, 4, 3, 2, 1, o, 3, 2,
e, 3, 2, 1, o, o, 4, 3, 2, 1, o, 3, 2,
e, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3,
9, 8, 7, 6, 5, 4, 3, 2, 1, o, 2, 1, o,
12, 11, 1e, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0o,
3, 2, 1, o, o, o, 4, 3, 2, 1, o, 3, 2,
4, 3, , 1, o, o, 4, 3, 2, 1, o, 18, 17,
4, 3, 2, 1, o, 1e, 9, 8, 7, 6, 5, 4, 3,

array_size = len(MP2)

modLength = 49

current_power = 1791001362435

upper_limit = 320999043869

current_index = current_power % array_size

solutions = ©

curr_solution = current_power >> 32

prev_solution = curr_solution

max_power = 5**(modLength - 1) + int((modLength + 3)//4)
while current_power < max_power - upper_limit:

11,

)

-

. v v .

P R NNRRPRUORNDRPR
M

=
N O
. v .

=
o r b
Ve v W e

-

. v v .

OO R P OO P,POPFROO
-

=
= U
. v o

truncPower0f16 = str(pow(16, current_power, 10**modLength))

isMSP = False
if '1' not in truncPowerOf16:
if '2' not in truncPowerOf16:
if '4' not in truncPowerOf16:
if '8' not in truncPowerOf16:

[y
()
-

. v .

-

. v .

N W woNwuOUoeow
-

-

[any
o
. .

match = re.search(pattern, truncPowerOfl6[::-1])

if not match:
isMSP = True
if isMSP:

23

. v v .

-

T

O OO N NNODNOWNNULO
%

-

=
00
-

. v v .

-

T

0O Ul P R R URNERER®
-

-

17,

. v v .

-

. v v .

\l-l>®®®‘:l>®0'\®®\l

-

=
()]
-

-

-

-

-

w w ut o w O
-

. v v .

-

. v v .

Ui VNN D ODNMDNPDUDNDWUV
-

-

=
N
. .

- -

N VNN D
M

-

D

-

. v v .

AP R WOORRPRWNRED
-

-

1

w
. .

™ -

R 0 R R W
M

-

. v v .

-

. v e .

W O O N NOONWOW
-

-

1

N
. .

- -

O NOON
-

-

. v v .

-

. v e .

NN U R ONNMENMNMNNDN
-

-

1

[
. .

- -

N OOy TR
-

-

. v v .

-

. v v .

P R AOURRORRR
M

=
o
. v .

-

-

[2 V2 B SN
-

print(modLength, max_power, current_power, sep = " - ")
f = open(f"{modLength} MS.txt", "w")
f.write(str(current_power))

f.close()

modLength += 1

solutions += 1

print_solutions = True
max_power = 5**(modLength - 1) + int((modLength + 3)//4) - upper_limit #- 1
if len(str(power0f16)) < modLength:
current_index += 1
else:

current_index += 1

current_power += MP2[current_index] + 1

current_index = (current_index + MP2[current_index]) % array_size

curr_solution = current_power >> 32

if prev_solution != curr_solution:
Not an accurate check for percentage left since the upper bound keeps decreasing.
It's an issue of speed vs. accuracy.
percentage_left = round(current_power/upper_limit, 2)

percentage_left = round((math.log(current_power, 5))/(modLength - 1), 2)
print(modLength, solutions, current_power, percentage left, sep = " - ")
prev_solution = curr_solution
f = open(f"{modLength}_MS.txt", "w")
f.write(str(current_power))
f.close()

print("QED", modLength, sep = " - ")

minimalPowers0f2()

24

ReverseMinimalSets.py

Description

This algorithm determines the upper limit for each module power.

Code

import sys

import math
import re

def reverseMinimalPowersOf2():

pattern = re.compile('3.*?5.*?5.%?6")

MP2 = [

-9, -10, -11, -12, -13, -14,
-19, -20, -21,

-18,

_8’
-17,

-9, -1, -11, -12, -13, -14, -15, -16,

_8,

-9, -1e, -11, -12, -13, -14, -15,

_8,

-1e, -11, -12, -13, -14,

_9,

-9, -10, -11, -12, -13,

'8;

-11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23,

-10,

-10,

-9, -10, -11, -12, -13, -14,

-8,

-11, -12,

-9, -1o,

—8,

2, -3, o, -1, -2
-10, -11, -12, -13, -14,

1
-9,

-16, -17, -18,

El

]
array_size = len(MP2)
modLength = 48
lower_limit = 1791001362435
upper_limit = 320999043869
max_power = 5**(modLength - 1) + int((modLength + 3)//4)
current_power = 5**(modLength - 1) + int((modLength + 3)//4) - upper_limit
current_index = current_power % array_size
solutions = ©
curr_solution = current_power >> 32
prev_solution = curr_solution
while current_power > lower_limit:
truncPowerOf16 = str(pow(16, current_power, 10**modLength))
isMSP = False
if '1' not in truncPower0Of16:
if '2' not in truncPower0f16:
if '4' not in truncPower0Of16:
if '8' not in truncPower0f16:
match = re.search(pattern, truncPowerOfl6[::-1])
if not match:
isMSP = True
if isMSP:
print(modLength, current_power, sep = " - ")
f = open(f"{modLength} RMS.txt", "w")
f.write(str(upper_limit))
f.close()
modLength +=
solutions +=
#upper_limit = max_power - current_power
max_power = 5**(modLength - 1) + int((modLength + 3)//4)
current_power = max_power - upper_limit
current_index = current_power % array_size
increment_power = MP2[current_index]
current_power += increment_power
upper_limit -= increment_power
current_index = (current_index + MP2[current_index]) % array_size
if len(str(power0f16)) < modLength:
current_index += 1

1
1

26

else:

current_index -= 1

increment_power = MP2[current_index] - 1

current_power += increment_power

upper_limit -= increment_power

current_index = (current_index + MP2[current_index]) % array_size

curr_solution = current_power >> 32

if prev_solution != curr_solution:
Not an accurate check for percentage left since the upper bound keeps decreasing.
It's an issue of speed vs. accuracy.
percentage_left = round(lower_limit/current_power, 2)

percentage_left = round((math.log(upper_limit, 5))/(modLength - 1), 2)
print(modLength, solutions, upper_limit, percentage_left, sep = " - ")
prev_solution = curr_solution
f = open(f"{modLength} RMS.txt", "w")
f.write(str(upper_limit))
f.close()

print("QED", modLength, sep = " - ")

reverseMinimalPowers0f2()

27

MinimalSetsCount.py

Description

This algorithm determines the number of potential solutions and the divisions between odds and evens.

Code

import sys

import math
import re

def minimalPowersOf2(modLength):

pattern = re.compile('3.*?5.*?5.%?6")

re.compile('3.*?5.*?5")
This pattern assumes that unless you're starting at a certain non-zero length, those lengths will be skipped.

It is particularly noticeable for the first small powers.

MP2 = [
9,

pattern2

12, 11, 10,

o, 14, 13,
10,

1,
16, 15, 14, 13, 12, 11,

3

7

8,
e, 21, 20, 19, 18, 17,

3

9,

1
10,

e, 15, 14, 13, 12, 11,

5
1,

9,

13, 12, 11, 1,

0, 14,

1,

12, 11, 10,

0, 13,

1,

12, 11, 10,
1
1
2

18, 17, 16, 15, 14, 13,
3
3
3

S < m
A A A A
a0 0o <
—

A A A -
© ©®© ® un
N
A A A -
- ® = VO
N
A A A A
N = NN
~N
A A A A
Mm N mMm 00
N

A A A A A A A A a A A a A A a =
OO0 O M T OO0 MOOT MMO

e, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, e, 18, 17, 16, 15, 14, 13, 12, 11, 10,
9, 8 7, 6, 5, 4, 3, 2, 1, e, 2, 1, o, 2, 1, o, 2, 1, ©, 5, 4, 3, 2, 1, 0,
12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, o, 1, o, 7, 6, 5, 4, 3, 2, 1, @0, 5, A4,
3, 2, 1, o, o, o, 4, 3, 2, 1, o, 3, 2, 1, o, 3, 2, 1, o, 3, 2, 1, 0, 6, 5,

, 3, 2, 1, o, o, 4, 3, 2, 1, oo, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
4, 3, 2, 1, o, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, o, 2, 1, o, 3, 2, 1, o, 2, 1

array_size = len(MP2)
error_check = int(math.log(array_size, 5)) # The array_size should always be a power of 5.
current_power = int((modLength + 3)//4)
current_index = @
delta_limit = 1 #620
04_solutions
e2_solutions
el solutions
if modLength > 3:

current_index = current_power % array_size
solutions = ©
curr_solution = current_power >> 32
prev_solution = curr_solution
max_power = 5**(modLength - 1) + int((modLength + 3)//4)
upper_limit = max_power - delta_limit + 1
print(modLength)

f2 = open(f"{modLength} MSC2.txt", "w")
truncPower0f16 = str(pow(16, current_power, 10**(modLength + 1))).zfill(modLength + 1) # Change power and zfill to modLength
for alternate approach.

while current_power < upper_limit:

isMSP = False

if '1' not in truncPowerOfl16[1:]: # Remove [1:] for alternate approach.

if '2' not in truncPowerOf16[1:]: # Remove [1:] for alternate approach.
if '4' not in truncPowerOfl16[1:]: # Remove [1:] for alternate approach.
if '8' not in truncPowerOfl16[1:]: # Remove [1:] for alternate approach.
match = re.search(pattern, truncPowerOfl6[:0:-1]) # Remove © for alternate approach.
if not match:
isMSP = True

nmon
(OO]

if isMSP:
solutions += 1
match = re.search(pattern2, truncPowerOfl16[:0:-1]) # Remove @ for alternate approach.

29

if truncPowerOf16[0] in '©2468"':

if match:
el solutions += 1
else:
e2_solutions += 1
else:
04_solutions += 1
print("\t", solutions, current_power, sep = " - ")
if ((current_power % 5**(modLength - 2) >= 5**(modLength - 2) - 100) or (current_power % 5**(modLength - 2) < 100)):
f2.write(f"{modLength} {current_power} {solutions}\n")

The following if statement is needed for modLength <= error_check. Commented out for speed.
Otherwise, indent the first line after it.
if modLength > error_check:
current_index += 1
current_power += MP2[current_index] + 1
truncPOf16Temp = str(int(int(truncPower0Of16) * pow(16, MP2[current_index] + 1, 1@**(modLength + 1)))).zfill(modLength + 1)
Change power and zfill to modLength for alternate approach.
truncPower0f16 = truncPOfl6Temp[(- modLength - 1):] # Remove the -1 for alternate approach.
current_index = (current_index + MP2[current_index]) % array_size
curr_solution = current_power >> 32
if prev_solution != curr_solution:
Not an accurate check for percentage left since the upper bound keeps decreasing.
It's an issue of speed vs. accuracy.
percentage_left = round(current_power/upper_limit, 2)
percentage_left = round((math.log(current_power, 5))/(modLength - 1), 2)
print(modLength, solutions, current_power, percentage_left, sep = " - ")
prev_solution = curr_solution
f = open(f"{modLength} MSC.txt", "w")
f.write(f"{solutions} {current_power}")

f.close()
f2.close()
print("QED", modLength, solutions, sep = " - ")
print(" ", modLength + 1, o4_solutions, e2_solutions, el_solutions, sep = " - ")
print(" ", modLength, o4_solutions//4, e2_solutions//2, el_solutions, sep = " - ") # Use this in alternate approach.
minimalPowers0f2(17)

30

References

[1] Graham Higman (1952), "Ordering by divisibility in abstract algebras", Proceedings of the London
Mathematical Society, (3) (1952), 2 (7): 326-336, https://doi.org/10.1112/plms/s3-2.1.326

[2] leffrey O. Shallit — “Minimal Primes”, J. Recreational Mathematics 30 (2) (2001), 113-117,
http://www.cs.uwaterloo.ca/~shallit/papers.html

[3] Bassam Abdul-Baki — “Minimal Sets for Powers of 2” (2010),
http://www.abdulbaki.org/math/MinimalSets2010.pdf

[4] OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences,
http://oeis.org/A071071

[5] Python Programming Language (1990), https://www.python.org/.

31

https://doi.org/10.1112/plms/s3-2.1.326
http://www.cs.uwaterloo.ca/~shallit/papers.html
http://www.abdulbaki.org/math/MinimalSets2010.pdf
http://oeis.org/A071071
https://www.python.org/

	Definition
	Conjecture
	Theorem
	Proof

	Potential Solutions
	Lemmas / Patterns
	Lemma 1
	Proof
	Example

	Lemma 2
	Proof
	Example

	Lemma 3
	Proof
	Example

	Lemma 4
	Proof
	Example

	Lemma 5
	Proof
	Example

	Lemma 6
	Proof
	Example

	Lemma 7
	Proof
	Example

	Programming

	Combinations
	Minimum Powers of 16
	Conclusion
	Observation
	Solutions Summary
	Python Source Code
	MinimalSets.py
	Description
	Code

	ReverseMinimalSets.py
	Description
	Code

	MinimalSetsCount.py
	Description
	Code

	References

